Edge-Coloring Partial k-Trees
نویسندگان
چکیده
Ž Many combinatorial problems can be efficiently solved for partial k-trees graphs . of treewidth bounded by k . The edge-coloring problem is one of the well-known combinatorial problems for which no efficient algorithms were previously known, except a polynomial-time algorithm of very high complexity. This paper gives a linear-time sequential algorithm and an optimal parallel algorithm which find an edge-coloring of a given partial k-tree with the minimum number of colors for fixed k. Q 1996 Academic Press, Inc.
منابع مشابه
A Linear Algorithm for Edge-Coloring Partial k-Trees
A b s t r a c t . Many combinatorial problems can be efficiently solved for partial k-trees. The edge-coloring problem is one of a few combinatorial problems for which no linear-time algorithm has been obtained for partial k-trees. The best known algorithm solves the problem for partial k-trees G in time O(nA 2~r where n is the number of vertices and A is the maximum degree of G. This paper giv...
متن کاملA Parallel Algorithm for Edge-Coloring Partial k-Trees
Many combinatorial problems can be efficiently solved for partial ktrees (graphs of treewidth bounded by k). The edge-coloring problem is one of the well-known combinatorial problems for which no NC algorithms have been obtained for partial k-trees. This paper gives an optimal and first NC parallel algorithm which finds an edge-coloring of a given partial k-tree using a minimum number of colors.
متن کاملA Polynomial Algorithm for Strong Edge Coloring of Partial k-Trees
A matching M in a graph is called induced if there is no edge in the graph connecting two edges of M. The strong edge coloring problem is to nd an edge coloring of a given graph with minimum number of colors such that each color class is an induced matching. This problem is known to be NP-complete, even in very restricted cases. Here, we show that it can be solved in polynomial time on graphs w...
متن کاملAlgorithms for Finding Distance-Edge-Colorings of Graphs
For a bounded integer , we wish to color all edges of a graph G so that any two edges within distance have different colors. Such a coloring is called a distance-edge-coloring or an -edge-coloring of G. The distance-edge-coloring problem is to compute the minimum number of colors required for a distance-edge-coloring of a given graph G. A partial k-tree is a graph with tree-width bounded by a f...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Algorithms
دوره 21 شماره
صفحات -
تاریخ انتشار 1996